
 APPLICATION NOTE
 

REU05B0057-0100Z June 2003 Page 1 of 9 

M16C/26 
Using the Watchdog Timer 

1.0 Abstract 
The following article introduces and shows an example of how to set up and use the watchdog timer on the 

M16C/26 microcontroller (MCU). 

2.0 Introduction 
The Renesas M30262 is a 16-bit MCU based on the M16C/60 series CPU core. The MCU features include up to 

64K bytes of Flash ROM, 2K bytes of RAM, and 4K bytes of virtual EEPROM. The peripheral set includes 10-bit 

A/D, UARTs, Timers, DMA, and GPIO. The M16C/26 MCU has a built-in watchdog timer, which can be used for 

a variety of applications. For most applications, it is used to recover MCU processing from a program that is out 

of control. In some cases, it can be used to preserve processor or firmware status after an application runs out of 

control.  

In this example application, we show you how to set up the watchdog timer, the watchdog interrupt vector, and 

how the application uses the watchdog timer. This example was written for the MSV30262-Board with an 

oscillator frequency Xin = 20 MHz. 

3.0 Watchdog Timer Demo 
This section discusses the watchdog timer demo setup and how it works. The key components of the program 

are discussed in the next section. A program listing appears later in the article.  

3.1 M16C/26 Watchdog Timer 
The M16C/26 watchdog timer is a 15-bit counter using BCLK as the clock source. BCLK and the watchdog 

prescaler control the length of time before the timer expires. This BCLK-prescaler combination can be used for a 

wide range of watchdog timing requirements. The block diagram of the watchdog timer is shown in Figure 1. 

A hardware watchdog interrupt is generated after the timer expires and the program executes the watchdog 

interrupt routine. To prevent the watchdog timer from expiring, the Watchdog Timer Start Register (WDTS) must 

be written before the timer underflows. For example, if the watchdog timer is set up for 1.6s, the WDTS register 

must be written to within 1.6s so that the timer does not expire.  

For this demo, the timer was set up for 1.678s. 

 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 2 of 9 

 
Figure 1 Watchdog Timer Block Diagram 

3.2 Watchdog Underflow Effects 
After the watchdog timer expires or underflows, an interrupt or reset is generated depending on the value of the 

PM12 bit of the Processor Mode Register 1. If PM12 is set (PM12 = 1), a reset is generated. If PM 12 is cleared 

(PM12 = 0), an interrupt is generated. For this demo, PM12 is cleared so an interrupt is generated.  

An interrupt service routine must be in place for the program to execute when a watchdog interrupt occurs. This 

interrupt routine can be used to store program parameters or register status in RAM. As an added fail-safe 

feature, the M16C/26 MCU chip is automatically reset if there is a second successive underflow of the watchdog 

timer. Furthermore, The bit-5 (WDC5) of the watchdog timer control (WDC) register may be used to distinguish 

between a cold start from a warm start.  

3.3 The Demo Application 
This application note concentrates on the generation as well as prevention of interrupts from watchdog timer. 

The demo uses two timers (Timer A0, A1), the AD converter using AN1, and I/O ports. Timer A0’s output is used 

as the clock source of Timer A1. Timer A1 is preloaded with the ADC value of the R46 potentiometer and is then 

used to set up how fast the LED’s LED3-5 blink and the WDTS register is written to. The I/O ports are used to 

turn on or off the LED’s LED3-5 and to read the status of the switches SW2–SW4.  

By adjusting R46 from full clockwise (CW) position to full counterclockwise position (CCW), the period the WDTS 

is written to varies also. The LEDs will be blinking fast at full CW and very slow (about 5s interval) at full CCW. At 

full CCW, the time period of when WDTS is written is greater than 2.097s, which will then trigger a watchdog 

interrupt. However, still at full CCW, if any of the SW2-SW4 switches is pressed within 2s, the watchdog timer is 

restarted and thus, a watchdog timer interrupt is not generated. 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 3 of 9 

4.0 Watchdog Timer Setup  
A watchdog timer interrupts after a certain time has expired. As mentioned earlier, the M16C/26 watchdog timer 

can be set up for various time periods by configuring the BCLK and watchdog prescaler. The equations to 

calculate the period based on the BCLK source are shown in Figure 2. These parameters are discussed in the 

following subsections.  For more detailed information, see the M16C/26 datasheet. 

 

 
Figure 2 Calculating the Watchdog Timer Period 

4.1 BCLK 
The clock source of the timer is BCLK, which is the CPU clock for the M16C/26.  The value of BCLK can be 

modified by changing the oscillator circuits of the device or by changing setting in the clock control registers (see 

“Clock Control” from the datasheet). BCLK can use Xin (f1), XCin (fc), or clock divider output (f2, f4, f8, f16, f32). 

Modifying the BLCK will then modify the frequency the timer counts down and processor operating speed.  

For this demo, the clock divider output f8 was used as the BLCK. With an Xin frequency of 20 MHz, BCLK 

frequency is 2.5 MHz. 

4.2 Prescaler 
Besides BLCK, the other parameter that can adjust the timer is the watchdog prescaler. The prescaler further 

divides BLCK for larger time periods. The prescaler that can be used differs depending on whether Xin or XCin is 

used as the BCLK source. If Xin is used, the prescaler can be either a div 16 (divided by 16) or div 128 (divided 

by 128). If XCin is used, the prescaler is fixed to div 2 (divided by 2).  

For this demo, since Xin is used for the BCLK, the prescaler used is div 128.   

4.3 Timer Count 
Besides BLCK and the prescaler, the other parameter is the timer count. This parameter, however, cannot be 

modified. Regardless of what value is written to the WDTS register, the default value of 07FFFh (32768) is 

loaded into the timer. 

 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 4 of 9 

 
Figure 3 Watchdog Timer control and start registers 

5.0 Reference 

Renesas Technology Corporation Semiconductor Home Page 
http://www.renesas.com 

 

E-mail Support 
support_apl@renesas.com 

 

Data Sheets 

• M16C/26 datasheets, M30262eds.pdf 

 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 5 of 9 

User’s Manual 

• M16C/20/60 C Language Programming Manual, 6020c.pdf 

• M16C/20/60 Software Manual, 6020software.pdf 

• Writing interrupt handlers in C for the M16C Application Note 

• MSV30262-SKP or MSV-Mini26-SKP Quick start guide 

• MSV30262-SKP or MSV-Mini26-SKP Users Manual 

• MDECE30262 or MSV-Mini26-SKP Schematic 

6.0 Software Code 
The example program was written to run on the MSV30262 Board but could be modified to implement in a user 

application. The program is written in C and compiled using the KNC30 Compiler. 

 
/***************************************************************************** 

* 

* File Name: main.c                                           

*                                                                   

* Content:   This program blinks the three LEDs (D3, D4, & D5) sequentially. 

* The blink rate is controlled by the R46 (Analog Adjust) potentiometer 

*  connected to AN1 of the M16C/26 ADC. Turn the R46 clockwise or 

* counter-clockwise to change the speed of LED switching. Extreme CCW 

* position of the potentiometer generates interrupt from WD Timer 

* and turns ON all LEDs simultaneously. However, rotating the potentiometer 

* CCW while pressing any of switches -2, -3 or -4 prevents the WD Timer 

*  from generating its interrupt and the 3 LEDs continue to blink even 

* at the extreme CCW position of the potentiometer  

* 

*   Date:  10-31-2002 

*   This program was written to run on the MDECE30262 Board for MSV30262-SKP. 

*                                                                   

* Copyright 2003 Renesas Technology America, Inc.                            

* All rights reserved                                             

*                                                                   

*============================================================================= 

* $Log:$ 

*===========================================================================*/ 

 

#include "sfr262.h"   // M16C/26 special function register definitions 

#pragma INTERRUPT  TimerA1_ISR 

 

/* LEDs */ 

#define red_led  p7_0 

#define yellow_led  p7_1 

#define green_led  p7_2 

/* SWITCHES */ 

#define sw2   p10_5 

#define sw3   p10_6 

#define sw4   p10_7 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 6 of 9 

 

void TimerA1_ISR(void);   //Interrupt Service Routine for Timer A1 

void mcu_init(void); // routine that initializes MCU 

 

void WD_Init();   //routine that initializes watchdog operation 

void WD_Loop_ISR(void); //routine when a watchdog interrupt is generated 

 

/***************************************************************************** 

Name:   main         

Parameters:                      

Returns:         

Description:  main program loop and initialization 

*****************************************************************************/ 

 

main() { 

 WD_Init();          /* intialize Watchdog timer */ 

 mcu_init();  /* initialize MCU */ 

 

/*************** PROGRAM LOOP **************************************/ 

 while(1){ 

  int value; 

  adst=1; /* Start A2D conversion */ 

  while( adst==1); /* Wait for A/D start bit to return to 0 */ 

  value=ad1; /* Read value from A/D register and pre-load Timer1 */ 

  ta1=value; /* This value is used to vary the blink rate */ 

 

 

  if(sw2==0 || sw3==0 || sw4==0) { //check if any switch is pressed 

   wdts = 0; //restart Watchdog Timer to continue blinking of LEDs 

  } 

 } 

} 

 

/***************************************************************************** 

Name:   TimerA1_ISR         

Parameters:                      

Returns:         

Description: This Timer A1 interrupt routine writes to WD Timer and prevents it from interrupting. 

It also varies the sequential blinking rate of LED's  

D3, D4, & D5. 

*****************************************************************************/ 

void TimerA1_ISR(void){ 

 static unsigned int out1=0; 

 

 wdts = 0; // re-start watchdog timer 

 

 ++out1; 

 if( out1 > 3 ) 

  out1=0; 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 7 of 9 

 

  //blink a LED 

 switch (out1){ 

   

  case 1: /* green on */ 

       red_led = 1; 

    yellow_led = 1; 

    green_led = 0; 

    break; 

 

  case 2: /* yellow on */ 

       red_led = 1;    

    yellow_led = 0; 

    green_led = 1; 

    break; 

 

  case 3: /* red on */ 

       red_led = 0;    

    yellow_led = 1; 

    green_led = 1; 

    break; 

 

   default: /* all LED's off */ 

    red_led = 1;    

    yellow_led = 1; 

    green_led = 1; 

 } 

} 

 

/***************************************************************************** 

Name:  mcu_init    

Parameters: None      

Returns: None 

Description: Initialization routine for the different MCU peripherals. See  

             settings for details. 

*****************************************************************************/ 

void mcu_init(void) { 

 

   /* LED initialization */ 

   pd7_0 = 1;  // Change LED ports to outputs (connected to LEDs) 

   pd7_1 = 1; 

   pd7_2 = 1; 

 

   red_led = 1; // turn off LEDs 

   green_led = 1; 

   yellow_led = 1; 

 

   /* Configure Timer A0 - 5ms (millisecond) counter */ 

   ta0mr = 0x80; // Timer mode, f32, no pulse output 

   ta0ud =0; 

   ta0 = 2499;  // 4ms time period for Timer A0 

   // 4 ms x 20MHz/32 = (2499+1) 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 8 of 9 

  

   /* Configure Timer A1 - Timer A0 used as clock */ 

   ta1mr = 0x01; // Event Counter mode, no pulse output 

   ta1 = 0;   

   trgsr = 0x02; // Timer A0 as event trigger 

   // Max interrupt interval of TA1 at Max ADC value of 0x3FF 

   // = 1024x0.004 = 4.096s > 1.678s timeout of WD Timer 

 

   ta0s = 1;  // Start timer A0 

   ta1s = 1;  // Start Timer A1 

 

   /* Configure ADC - AN1 (R46 Analog Adjust Pot) */ 

   adcon0 = 0x01; // AN1, one-shot mode, software trigger 

   adcon1 = 0x28; // 10-bit mode, Vref connected. 

   adcon2 = 0x01; // Sample and hold enabled 

 

   asm("FCLR I"); // disable irqs before setting irq registers 

  

   ta1ic = 3;  // Set the timer A1's interrupt priority to level 3 

  

   asm("FSET I"); // enable interrupts 

 

   return;       

} 

 

void WD_Init(){ //Initialize Watchdog Timer 

 

 cm06 = 1;  //BCLK = (20/8)MHz = 2.5 MHz (Xin div by 8, default) 

 

 wdc7 = 1;  //prescaler is div by 128 

   //Watchdog Timer period = (32,768 x 128) /(2.5 MHz) = 1.678s 

 

 wdts = 0;  //start Watchdog Timer by writing any value to 

   //wdts register (value always resets to 0x7fff = 32,768 when 

   //written to) 

} 

 

void WD_Loop_ISR(void){ //turn ON all LEDs 

 while(1){ 

  red_led = 0; 

  yellow_led = 0; 

  green_led = 0; 

        

  wdts=0;    //writing in WD Timer prevents it from interrupting again 

        //the second interrupt from the WD Timer would have  

     //reset the MCU 

 } 

} 



 

M16C/26
Using the Watchdog Timer

 

REU05B0057-0100Z June 2003 Page 9 of 9 

In order for this program to run properly, the Watchdog Timer and TimerA1 interrupt vector needs to point to the 

service routines for these interrupts. The interrupt vector table information is included in the startup file 

"sect30.inc".  Insert the function label "TimerA1_ISR" and the function label  " WD_Loop_ISR" into the interrupt 

vector table locations as shown below. 
;******************************************************************************* 

; 

;  sect30.inc :    Customized section and macro definitions for the M30262 

;                  (M16C/26) microcontroller using the NC30 compiler. 

; 

;  Description :  This file is specific to the M30262 microcontroller and adapted  

;                 for use with the MSV30262 Starter Kit. UART1 interrupt 

;                 vectors are used for the Starter Kit debugger. 

; 

;****************************************************************************** 

 

;--------------------------------------------------------------- 

; variable vector section 

;--------------------------------------------------------------- 

    : 

    : 

.lword dummy_int  ; TIMER A0 (for user) 

.glb  _TimerA1_ISR 

.lword _TimerA1_ISR  ; TIMER A1 (for user) 

.lword dummy_int  ; TIMER A2 (for user) 

.lword dummy_int  ; TIMER A3 (for user) 

    : 

    : 

;=============================================================== 

; fixed vector section 

;--------------------------------------------------------------- 

.org 0fffdch 

 

.glb  _WD_Loop_ISR 

 

UDI: 

 .lword dummy_int 

OVER_FLOW: 

 .lword dummy_int 

BRKI: 

 .lword dummy_int 

ADDRESS_MATCH: 

 .lword dummy_int 

SINGLE_STEP: 

 .lword dummy_int 

WDT: 

 .lword _WD_Loop_ISR 

DBC: 

 .lword dummy_int 

NMI: 

 .lword dummy_int 

RESET: 

 .lword start 

;******************************************************************************* 



 

 

  
Keep safety first in your circuit designs! 

 
• Renesas Technology Corporation puts the maximum effort into making semiconductor products 

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap. 

 
 
 

Notes regarding these materials 
 

• These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corporation product best suited to the customer's application; they do not convey any 
license under any intellectual property rights, or any other rights, belonging to Renesas Technology 
Corporation or a third party. 

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any 
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, 
or circuit application examples contained in these materials. 

• All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corporation without notice due to product improvements 
or other reasons. It is therefore recommended that customers contact Renesas Technology 
Corporation or an authorized Renesas Technology Corporation product distributor for the latest 
product information before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss 
rising from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corporation by various 
means, including the Renesas Technology Corporation Semiconductor home page 
(http://www.renesas.com). 

• When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products. Renesas 
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting 
from the information contained herein.  

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a 
device or system that is used under circumstances in which human life is potentially at stake. Please 
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product 
distributor when considering the use of a product contained herein for any specific purposes, such as 
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea 
repeater use. 

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in 
whole or in part these materials. 

• If these products or technologies are subject to the Japanese export control restrictions, they must be 
exported under a license from the Japanese government and cannot be imported into a country other 
than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited. 

• Please contact Renesas Technology Corporation for further details on these materials or the 
products contained therein. 
 

 


